Different levels of magnification of matter, ending with the string level: 1. Macroscopic level – Matter. 2. Molecular level. 3. Atomic level – Protons, neutrons, and electrons. 4. Subatomic level – Electron. 5. Subatomic level – Quarks. 6. String level. [By MissMJ (CC-BY-3.0), via Wikimedia Commons.]
A friend of mine on Twitter, Aaron (a pseudonym), is an overseas, 16-year old boy, who seriously admires Albert Einstein and wants to become a physicist. He continually writes me (Ted, also a pseudonym) questions about the theory of relativity and related topics, and I am sending answers. In this series of blog posts, those questions and answers are reproduced with modifications. I am not an expert in the fields of physics related to relativity. So, my answers might contain errors. If you find any error, please do not hesitate to write a comment for the benefit, not only of the boy and me, but also of other readers.
Aaron: What is string theory? I have read a little about it. It seems to be the theory of everything that Einstein was working on. Dr. Michio Kaku is probably working on how to find it. However, there are many equations in this theory. How can I understand it?
Ted: "What is string theory?" is a difficult question for me. In my student days, this theory was not yet born. So, some years ago I wanted to learn a little bit of it and bought a graduate level text book on this theory written by the physicist you just mentioned, i.e., Michio Kaku. However, it was pretty difficult for me to learn it by myself, and I have not read the book yet.
The essential idea of string theory is that all of the different "fundamental" particles are different manifestations of one basic object, a string (see the figure above). I hear that the equations of this theory gives a lot of solutions, and presently it is difficult to determine which of those solutions reflect the laws of physics in the real world. In this situation, there is the supposition that there may be many worlds, in each of which one of many solutions is applicable. (However, it is a vexing problem how we can verify the applicability of solutions in other worlds). A number of gifted physicists are studying this theory, but some famous physicists do not think that this is the right direction to advance the study of theoretical physics. Further, it is said that we humans don't yet have enough mathematical methods fully to explore this theory.
String theory is such a complex and difficult thing. You had better learn it after enough mastering of quantum mechanics and relativity. Taking such a step is indispensable also considering the fact that string theory aims at the unification of quantum mechanics and general relativity. However, there are a number of Web pages explaining string theory for non-scientists. See, for example, Ref. 1 and links given in it.
Reference
- Alberto Güijosa, What is String Theory?
No comments:
Post a Comment